

NIOS Nanomechanical Testers: Metal-ceramic and polymer

and polymer applications

Optical microscopy

Indenter positioning – displacement between microscope focus point and indenter tip is calibrated with 1 um accuracy

> Measuring linear size (and area) over the optical image

Example: coated cutting tools

Sample: cutting edge of the fraise

Sample: micro-drill for electronics industry applications

 $R_a = 70 \text{ nm}$ RMS = 86 nm $R_z = 232 \text{ nm}$ $H = 30,8\pm6,5 \text{ GPa}$ $E = 675\pm105 \text{ GPa}$ $k = 2,15\pm0,05 \text{ kN/m}$

future's in the making

Surface topography

^{713.51 nm} Image of the residual imprint

Example: multilayer coating on cutting tools

Sample

Sample angle polish

Optical image of layered structure

Material	Hardness, GPa	Elastic modulus, GPa
Hard Alloy	19.0 ± 5.4	410 ± 140
TiCN	17.7 ± 4.5	340 ± 80
Al ₂ O ₃	20.4 ± 4.0	340 ± 35
TiN	10.9 ± 3.3	360 ± 200

Localized nanomechanical tests

Topography: before indentation

Sample: aluminum alloy D16

Topography: after indentation

SPM aids indentation: pile-up analysis

Pile-up analysis on steel 254 reference block HV 0.05

Study of delamination, adhesion and thickness

Sample: plasma sputtered diamond-like coating

	Thickness, nm	Load at which film is pulled, mN
1	460±20	6,2±0,3
2	265±10	5,9±0,3
3	960±70	11,0±2,6
4	1255±20	20,8±6

7

Reciprocating wear tests

Wear estimation of coatings

L=100 um — stroke length; v=0,13 Hz — reciprocating test frequency; t=7600 sec — testing time; h — indentor penetration depth; Indirect volume estimation over the optical micro-photograph of the groove

$$V = L \left(R^2 \arcsin\left[\frac{w}{2R}\right] - \frac{w}{2} \sqrt{R^2 - \frac{w^2}{4}} \right)$$

R=17 um — effective stylus radius; w — width of the residual groove; L=100 um — groove length;

Direct volume estimation over the SPM image

ABI (automated ball indentation)

2D: H=f(x, y), static loading

Sample: gradient magnetic alloy of the following composition:

Chemical element	Cr	Ni	Si	Mn	С	V	Fe
Contents, %	16,5	7,5	0,48	1,0	0,08	0,04	remains

Hardness map of the magnetic zone boundary

Hardness profile across the magnetic zone boundary

Mapping 3D: H=f(x, y, z), hardness tomography

Sample: thin Ag film on glass substrate Optical micro-photo of the array of PUL indentations

future's in the making

Volumetric quantitative map (tomogram) of hardness

Mapping 3D: hardness tomography

Sample: separation border between copper and Fe-Cr-Al alloy

Sample: Polymer material for tooth prosthetics

Hardness (old_s1)

0.32

0.30

0.28

0.26

0.24

0.22

0.20

0.18

H, (GPa)

SECTION (Original) Y. (nm) 4X = 84.95 (um); dY = -254.52 (nm); α = -0.2* Y. (nm) 1250 1000 750 250 0 255 50 75 X. (um)

Surface topography and cross-section profile

Hardness vs. depth dependency for 3 polymer samples Elastic modulus (new_s3_ALL) E, (GPa) 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 Depth, (nm) 500 1000 2000 2500 Ò. 1500

future's in the making

Elastic modulus vs. depth dependency for 3 polymer samples

It has been shown that chemical treatment reduces hardness and elastic modulus for 10-15%

Blue lines – before treatment Green lines – after treatment

Depth, (nm) 1500 2000 2500

Sample: Thin film of poly-n-isopropylacrylamide

This polymer exhibits the properties of superabsorbent and is used in pharmaceutical industry during remedies extraction.

Thickness, nm	Hardness, GPa
100	0.5±0.1
5000	1.1±0.3

Height profile of the pNIPAm film. Pile up effect depends on applied forces (F) and film thickness (*h*): a) F=5mN, *h*=5 μ m; b) F=1mN, *h*=100nm; c) F=2mN, *h*=100nm.

Example: protective polymer coatings

Samples: polymer materials with thermosetting siloxane protective coating

Sample	Roughness , nm	Elastic (Young) modulus, GPa	Hardness, GPa	Elastic recovery rate, %
PC	11,8	2,2	0,27	72
PMMA	4,4	4,5	0,33	60
PC+coating	0,5	1,4	0,68	99

Instrumented indentation loading-unloading curves

Topography image after progressive scratch test (0 to 30 mN): PC (a) and PC+coating (b)

Mapping 2D: H=f(x, y), dynamic loading

Sample: glass fibers in the polymer matrix

accordingly, H or E if at least one of these quantities is known) as a function of depth or surface coordinates.

Mapping 3D: hardness tomography

Sample: transition area between 2 polymer coatings on polydimethilsiloxane (PDMS) substrate

Hardness tomography technique is based on combination of PUL or DMA method with precise indentor positioning over the regular XY grid on the sample surface

Samples: polyethylene multilayer film with thickness 50-300 um

Task: testing the mechanical strength and resistance to puncture of films on the substrates of polypropylene and steel

Diamond flat punch indentor

Loading-unloading curves obtained with Berkovich diamond indentor

Thank you!